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Abstract. Results are presented far both definite and indefinite integrals of certain products 
of two modified Bessel functions K.. General recurrence relations are developed for these 
integrals which depend on both the order of the modified Bessel functions and various 
parameters. Explicit low-arder formulae and special cases are given and many of these 
have application to mathematical and physical problems where the Green function far the 
Helmholtz operator in two dimensions (KO) appears. 

1. Introduction 

In this paper we will be concerned with the calculation of integrals of certain products 
of modified Bessel functions. We present results for integrals of the form 

where K, is a modified Bessel function of the second kind of order U. Here a, p and 
y are real numbers and because K, = K - ,  [ 131 (p. 970) we restrict attention to p ,  y 2 0. 
We refer to In,q,y as a generalized Lommel integral in relation to the usual Lommel 
integrals which are for products of Bessel functions J ,  on a finite interval with y = 0 
or 1 [14,21]. Although there is an abundance of published results for integrals of 
products of Bessel functions J,  (e.g., [9, 17,21,22,28]) there does not appear to be a 
comprehensive collection of results for indefinite integrals of the form ( I ) .  The relative 
scarcity of integral forms (1) in such well known works as [ I ,  IO, 13,18,23] is to be 
noted. It is hoped that the formulae presented here, especially the low-order cases 
tabulated in section 3, will partially fill this gap and provide a useful reference. 

We would particularly like to mention the application of our results for low orders 
p,  y in (1) in phenomenological theories of superfluidity and type II superconductivity. 
The zero-order modified Bessel function KO is especially important in certain physical 
applications where it provides a Green function for the Helmholtz operator V2 - l / A 2  
in two dimensions in cylindrical coordinates (e.g., [20]). In the London theory of 
superconductivity the function 

where A, & are physical constants ( A  being the penetration depth and &, the flux 
quantum), represents the magnetic field due to an azimuthal supercurrent 
[2,4,5,11,27]. That is, b ( r ) E K , ( r / A )  models a magnetic vortex of a single flux 
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quantum. Because of this connection, integrals of produm of modified Bessel functions 
appear in the calculation of many physical quantities. For example, various energy 
densities are proportional to the square of b and integrals and derivatives of b. In 
turn, from the line energy of a magnetic vortex the lower critical field H,, may be 
calculated [4,7,25,27]. Another example of the occurrence of integrals of the form 
( 1 )  is provided by the calculation of the viscous drag on a moving vortex, as in the 
continuum version of the model in  [6]. The integrals ( I )  for y a negative integer seem 
to arise most frequently in  these physical problems. 

In this paper we present results for both indefinite and definite integrals. The 
formulas for evaluation of definite integrals should be useful for numerical purposes. 
In section 2 we present a simple two-term recurrence relation ( R R )  for I , , ,  and its 
solution for general p,  q. and y a negative integer. We also discuss the need to write 
the RRS in terms of decreasing orders p. q. In section 3 we specialize a R R  of section 
2 to integer order cases for negative integer values of y for ma!! 171. The resulting 
indefinite integrals are collected there. In sections 4 and 5 we present other R R ~  for 

which are three-term in one of the parameters p, q, or y.  (The R R ~  of sections 2 
and 4 are made in terms of decreasing orders.) Special cases of the RR, of sections 4 
and 5 also provide useful results for indefinite integrals. The results of section 4 are 
derived from the defining differential equation for modified Bessel functions whiIe the 
method of section 5 uses a RR for the derivative of K, and a suitable factoring of x y .  
The general RRS which are developed may be amenable tc implementation in computer 
algebra systems such as MACSYMA, Mathematica, REDUCE, Scratchpad, or  S M P  

[15,24,26,30,31]. The paper concludes with a brief summary. 
We note that commercial software exists which will symbolically integrate elemen- 

tary functions and numerically integrate a range of special functions (e.g., 
[15; 24,26,30; 311). As some of these software packages have the means to recognize 
and manipulate certain special functions, including modified Bessel functions, it would 
appear possible to incorporate, say, the formulae of section 3, into such software to 
provide an automated capability to symbolically integrate products of modified Bessel 
functions. Furthermore, insofar as existing packages contain integration rules, such as 
integration by parts, it seems possible that software tools could be used to generate 
R R ~  such as we present and iterate them to any finite number of terms. These are only 
a few of the possibilities for software implementation. 

2. Two-term recursion relation for I,,,q,y 

Before presenting the major results of this section; we remark on a few of the possibilities 
for evaluating integrals of products of modified Bessel functions. The use of a generating 
function is often a useful technique for calculating integrals of special functions. 
However, because of the presence of the logarithmic singularity in K,,, this option, at 
least in the usual power series form, is not available. Among the remaining possibilities 
of evaluating integrals of the form (1) are manipulation of the series or integral 
representations of K,. In the former case integration term-by-term and in the second 
case interchange of the order of integration, followed by re-expression in terms of K ,  
will be required. In  view of the tedium of these approaches we have opted for the 
development of various recurrence relations ( R R ~ )  for lP,4.Y. Our methods appear to 
be complementary to the method of [ 121 which uses an equivalent system of differential 
equations. 
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We now derive the first and perhaps simplest of our R R ~ ,  which still yields many 
practical results. We use the two RRS for derivatives of K ,  [13] 

dK,(ax) U 

dx x 
= - K, (  a x )  - aK,+, ( a x ) .  

Two obvious symmetries of M , , ,  are 

M , , , ( a ,  P, a, b) = M , , , ( P ,  a, a, b) = -M p.q.u(a. P, b, a ) .  
We also note that because K,. vanishes a t  infinity - M , , ,  (a, p, &CO)= 
z'K,,(az)K,,(pz), thereby providing a connection between definite and indefinite 
integrals. 

By integration by parts and (2) we have 

and by (3) we have 

We refer to (6) and (7)  as two-term RRS for because they are two-term in each 
index p ana q. i n  figures i ( a )  ana i ( b )  we give the -stencii' For R R ~  ( 6 )  and (7 ) .  These 
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Figure I. ( 0 1  Stencil for R R  ( 6 )  in the py piane. The allernating cross and circle symbols 
denote successive generations. ( b l  Stencil for R R  ( 7 )  in #he py plane. As for ( a l .  the nth 
generation contains n + I distinct points. 
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figures are akin to the computational 'molecules' employed in describing finite 
difference schemes (e.g., [ 161, p 45). In figure I(a),  for instance, the point at coordinates 
( p ,  q )  represents integral lp.q,y. By (61, it leads in the 'first generation' to neighbouring 
points ( p  - 1,9) and ( p ,  q - 1). Implicit in figure 1 is that we move from a sheet with 
index y to a sheet with index y +  1 at each generation. It is easy to see in figure l ( a )  
that the nth generation has n + 1 points, representing n + 1 integrals, lying on the line 
p +  9 = - n  in p9 space. Similarly, for the nth generation of R R  (7) in figure l ( b ) ,  n + 1 

to the next generation, figures l (a)  and l (b )  also yield the number of times each 
integral I,, , ,  appears in the nth generation. Indeed, for R R  ( 6 ) ,  by appending a '1' to 
the point ( p ,  9),  a Pascal triangle is formed with each row of the triangle corresponding 
to the line p + q = -n. Similarly, the powers of a and p at each point may be included 
in such figures. 

The P.R (6) appears quite generally ~sefi?!, fer it expresses an integra! I , , ,  in terms 
of integrals of lower order. Here we will focus on the case that y is a negative integer: 
by iteration we can reduce I , , ,  to a sum of M , , ,  terms and integrals with y = -1. 
In fact, for y a negative integer with 1 ~ 1 2 2 ,  we may write a general formula, setting 
S - l y + I l = - y - l . T h e n  wehave 

..-:-+" I : _  -- *Le I : -_  "1"- _. D., *-..-+inn n-oh r L - t  I Ililr~l ---+-:!-..+~~ 
p 'Y"1L"  11s "11 U,= 1111v y I y - , I _  " J  C"""". .~ C Y I I .  L..l... L I I ' I L  'I 6 ° C "  1 L ' L C ~ 1 ' I ,  C"llll l""LCJ 

For integer orders, the integrals I,-,,,,,,,, I,,,,-, and I , , _ ,  can be done directly with 
the aid of the R R  

(9) 
2 v  

K + i ( x ) =  Ku-i(x)+- K v ( x )  
X 

and are given in section 3 for a = p = 1. The integral I , , , _ ,  may be expressed in terms 
of Mp,4,r and inserted into (8) to obtain a formula for I,,,,, in terms of Mp.q,l only. 
This result will not be given here as  it is not needed further on. Instead, the results of 
the reduction process for indefinite integrals for y a negative integer and integer orders 
are collected in section 3. 

The RR (7) can be iterated for general y ,  resulting in a series of M , , ,  terms with 
increasing order. It is then possible to write I , , ,  as a formal infinite series: 

" 
l , q , , =  Z X D m . n ( ~ ,  q, a, A ~)Mp+m.u+n,v+n+~ (10) 

* = O  "=U 

where 

The simplicity of formula (lo), (11) is due to the fact that (7) is only a fwo-term R R .  

However, ( IO)  is valid only when the infinite series converges. To test the convergence 
or divergence of the series we form certain asymptotic estimates 181 which are not 
presented here. We find that the series in fact diverges due to the rapid growth of 
modified Bessel functions in the order. Therefore RRS such as (71, which are develop- 
ments in increasing order, are not useful when taken to an infinite number of terms. 
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3. Indefinite integrals with y a negative integer 

In this section we give results of the use of RR (6) for y a negative integer and take 
a = p = 1.  The integrals (12)-( 14) may be performed directly by using RR (9). We note, 
however, that certain y = 0, 1 integrals must be left in terms of I K i  dx. This latter 
integral is only expressible as an infinite sum [171. 

For m even, 
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4. Application of ODE 

Here we give an alternative method of developing RRS for Ip,y,l, which are in general 
three-term in y. This approach is based on partial integration of the defining ordinary 
differential equation (ODE) for modified Bessel functions. The ODE for K,(ax) may 
be written in the form 

1 d2Kp(ax)  1 dK,(ax) p 2  
K,( ax)  = 7 a [ dx’ +- x dx  -- x’ K,,(ax)] 

If we multiply equation (19) by xYKq(Px)  and integrate from a to b we have 

- p 2  l b  x’-’K,(px)K,(ax) dx , 1 (20) 

We define 

(which can he related to M , , ,  by RRS (2), (3 ) ) .  We integrate the first term on the 
right-hand side of equation (20) by parts twice and use the ODE (19) for K , ( p x )  in 
the form 

These operations result in 



Calcularion of generalized Lommel integrals 29 

We now employ RR (2) with the result 

+ ( I  - Y)[-OIIp- l .%y-,  +p~p.y-l.y--lll (I # p. (23) 

The RR (23) is two-term in the orders p; q but three-term in y. Figure 2 presents a 
'stencil' for (23) in the ( p ,  y )  plane. As for figure 1, a number can be  attached to each 
point in figure 2 giving the number of times the corresponding integral appears in that 
generation. A diagram in the (q ,  y )  plane would be similar. It is seen that in the nth 
generation in figure 2 points lie on the n + 1 'diagonal' lines given by p +  y = -n ,  
-n - 1, .  . . , -2n. The corresponding number of distinct integrals in the nth generation 
is f (  n +  1)(n+2) .  

The R R  (23) may be expanded, reducing I,,, to  a sum of terms of lower order. 
This RR seems most useful for y a positive integer and some special cases. We may 
enumerate these cases as follows. 

(1) For y = 1 we obtain 

a $:andard Lommel integral [21] 
(2)  For 01 = p  we have 

Figure 2. The first three generatioor for R R  (23)  in the py plane are shown. The crosses 
denote the first generahn,  the circles mark the second generation. and the squares the 
third generation. 
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which further reduces for y = -1 to 

In view of R R S  (2),  (3),  this js seen to agree with formula (14) of section 3. 
(3) For P = q, 

That is, the RR (23) becomes two-term inp, y. For y = 1, (27) gives the Lommel integral 

5. Recursion for Ip,q,-y constant in - y  

In this section we develop RRS for I,,-, which do not vary the parameter -y. This 
approach is based on the relation [13] 

integration by parts, and a suitable factoring of x?. 

we have I,,,,_, = I ; ,JaP+'  where 
ByasimplechangeofvarjableX =ax, withthedefinitionsC-B/a, a'= aa, b'= ab, 

" X-'K,,(X)K,([X) dX. (30) 

We now write X-9+'Xq-y-' for the X-' factor in (30) and use (29). Then integration 
by parts yields 

0' 

where 

and MP,V.--Y is defined in (5).  Using R R  (2) for K ;  we have 

A A 4 1 [ ( q - p - y - l ) X ~ ' - ' K , ( X ) K , _ , ( f X )  
h' 

5 "' 

- X-yKp--I(X)Kq--I(fX)] dX. (32) 

The second integral on the right-hand side of (32) is just -(l /[)lh-, ,q-, .  Next we 
employ the R R  
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so that A , ,  becomes 

Therefore we obtain the result 

If we had instead used the factorization X - y  = X-"+'XP-'-l  in ' (30 )  we would have 
obtained the RR 

T h e  R R  ( 3 5 )  is two-term in the order p and three-term in the order 9 while RR ( 3 6 )  
is three-term in p and two-term in q. Both o f  these RRS are constant in the parameter 

IP-1.9-11 

0 144-21 

0 X X O i  

X 

0 

0 

Figure 3. Stencil for R R  (35) in the pp plane. Successive generations of integrals are marked 
by cross or circle symbols. 
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-7. They have been derived in such a way that I , , , - ,  is expressed in terms of integrals 
of lower order, as we saw in section 2 that RRs developed in terms of higher order 
have limited usefulness. For the special cases that y = 1 in ( 3 5 )  or p = 1 in ( 3 6 ) ,  these 
RRS reduce to the identity l , , q , - y=  lL,,,,-7. For the special case that p + q + y - I  =O, 
the RRS (35), ( 3 6 )  become, respectively, 

1 1 
l p , q - ~ , - y + -  f p - i , q - i , - y =  -- M n , q - i , - y  p - 1  = - y - y  (37a)  5 P 

~ p - 2 . . . ~ y + 5 1 P - l . y ~ l . - l  = -- M,-L,- ,  ( 3 7 6 )  
1 

y - 1 = - y  - p .  
a 

The R R ~  ( 3 7 )  are increasing in  one of the orders while decreasing in the other. The R R  

( 3 7 a )  appears useful in  the case that the orders are integra! and p <(I and q > 0, w h l ! ~  
(376) appears best suited for p > O ,  q<O. 

Supposing that p and y are positive integers, the RRS ( 3 5 )  or ( 3 6 )  may be used to 
reduce an integral I , , - ,  to one of the form l..o,-v, i.e., of the form 

l ,o . -v  = lnh x - ' K , ( p x ) K , ( a x )  dx. ( 3 8 )  

By repeated application of RR (9) for successive K, ,  we may further reduce ( 3 8 )  to 
the evaluation of integrals 

Finally, referring to figure 3 ,  we see that the nth generation of RR ( 3 5 )  (or ( 3 6 ) )  
has n + 1 integrals, the corresponding points lying on the line p + q = -2n. 

and lo,,,-*,. 

6. Summary 

In this paper we pointed out the numerous occurrences of integrals of the form ( I )  in 
physical applications. We developed and discussed general recursion relations ( R R ~ )  
for the integrals I , , ,  where p, y are the orders of the modified Bessel functions and 
y is the power of a factor of the integration variable. We presented a geometrical aid, 
in the stencils of figures 1-3, for the analysis of the RRS. We mentioned that the R R S  

for the integrals ( I )  appear to be amenable to implementation in computer algebra 
systems and, in fact, such programs in the near future may be able to serve in deriving 
these or similar relations. 

The various RRS that we derived have complementary ranges of usefulness. The 
simple two-term R R  ( 6 ) ,  derived in section 2 by integration by parts and the basic RRS 

(2), ( 3 )  for modified Bessel functions, seems well suited for the parameter y a negative 
integer. A collection of low-order results from R R  ( 6 )  appears in section 3 .  In sections 
4 and 5 we presented R R ~  which are three-term in one of the parameters p ,  y or  y. The 
results of section 4 were derived from the defining ordinary differential equation for 
modified Bessel functions while the results of section 5 came from the use of a R R  for 
the derivative of K ,  and a factoring of x". The R R  ( 2 3 )  of section 4 is well suited for 
y a positive integer. The special cases (24)-(28) of R R  (23) hold for y = * I ,  a = P or 
p = q. Some of these special cases reduce to well known simple Lommel integrals. The 
R R ~  (35), ( 3 6 )  of section 5 should prove useful when both the orders are positive 
integers, while the special cases ( 3 7 )  should be useful when one order is negative and 
the other positive. 
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